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This paper describes a method for predicting the response of the two-dimensional, 
incompressible, laminar boundary layer on a semi-infinite flat plate under small harmonic 
progressive oscillations of the free-stream velocity for arbitrary frequency and wave speed. 
The free stream considered consists of a constant mean on which an oscillating amplitude 
varying with downstream distance is superimposed. The governing equations are solved 
numerically by a differential-difference technique in conjunction with a series solution for 
small reduced frequencies. The results are compared with those obtained by other methods 
and measurements. The results are accurate for a full range of frequency, and the response is 
very sensitive to changes in the wave convection speed. 
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In t roduct ion 

Due to technological advances, understanding and predicting 
unsteady boundary layers in applications such as aircraft in 
gusts, helicopter rotors in translating motion, and 
turbomachinery have become more important. However, most 
existing theoreticaP 7 and experimental v investigations have 
been confined to external flow in which the oscillations are 
purely time dependent, corresponding to the equation 

U(x, t) = U o + U 1 exp(iegt) 

where U, Uo, and U1 are the instantaneous, mean, and 
oscillation amplitude of the free-stream velocity, respectively, o~ 
is the radian frequency, x is the streamwise distance, and t is the 
time. These oscillations convect downstream at infinite wave 
speed and occur in irrotational flow. 

Rotational flow in which harmonic progressive oscillations 
are induced receives little attention. An example is the vortices 
shed by a bluff body convecting with a wave speed Q usually less 
than U o. The free stream in this type of flow corresponds to 

U(x, t)= U o + U 1 exp[ko( t -x /Q)]  

Patel s-9 presented the boundary layer measurements with free- 
stream oscillations convecting at a wave speed Q = 0.77U0. He 
also presented approximate theories for low and high 
frequencies based on the approaches of Lighthill. 1 However, 
these theories were shown to be erroneous, and a revised high- 
frequency theory using a different approach was presented in 
Refs. 10 and 11. 

To the author's knowledge, no work has been devoted to 
solving problems due to harmonic progressive oscillations of the 
free stream for a full range of frequency and wave speed. The 
objective of the present work is to devise a method to solve such 
problems. 

Analysis 

The usual two-dimensional, incompressible, time-dependent 

boundary layer equations are 

0u 0v 
~xx +ffyy=0 (1) 

~u Ou t3u ~U OU ~2u 
~ + . ~ + ~  Sy =TT + u~;+v ~y2 (2) 

The prescribed free stream containing small harmonic 
progressive oscillations is 

U(x, t) = U o + U 1 (x) exp[iog(t - x/Q)] (3) 

where Ul(x)< U o. 

Inside the boundary layer, the instantaneous velocity 
components take the asymptotic expansion form 

u(x, y, t) = Uo(X , y) + u 1 (x, y) exp[ko(t - x/Q )] + . . .  (4a) 

U(X, y, t) = Uo(X , y) "[- U 1 (X, y) exp[ito(t- x/Q)] + . . .  (4b) 

where lull<~luol and Iv, l<lvol. 
In the limiting case U~(x)~Uo,  the second and higher 

harmonic response in (4) can be neglected. Now substitute (3) 
and (4) into (1) and (2) and extract equal-order amplitude terms. 
For  the mean flow, this gives the usual steady boundary layer 
equations. For  the oscillatory flow, this gives 

OUl U, 63V, 
io~ ~ + ~ ' = 0  (5) 

~x Q t3y 

/~ul . ul \ ~u o ~ul OUo 
iO)Ul +UO~xx -- IO)~) '~-Ul  ~X  "~-I)O ~yy "~-Vl ~y 

=i~oU 1 1 -  +V~2y 2 + U °  dx (6) 

After a rigorous boundary layer analysis, 1° these equations 
are shown to be valid only when the wavelength of the 
oscillation is large compared with the mean boundary layer 
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thickness. We introduce the stream functions ~'o and ~1 so that 

u° = Oy' v°= c~x 

OIPl OIPl i~o 
Ul= ~y, ~,=-77+~1 
satisfy the continuity equations (1) and (5), and the trans- 
formations 

(yU~) 1/2, , - , ,  ~o(X,y ) i/tl (x, y ) 
t /=y J o t q ) = ( ~ 2 ,  f l(x,q) (Uovx)ll: 

The mean flow equation then reduces to the Blasius equation 

f'~' +O.5fof'6=O (7) 

and the oscillatory flow equation (6) reduces to 

~93f, 1 [  ,, d i f l \  
io + io v )  

[( Uo \ ' f i  Uo. U1(1 Uo~]+ x dUl 

(8) 

where &=ogx/Uo is the reduced frequency and primes denote 
ordinary differentiation with respect to t/. In this equation, 
uo/Uo=f'o, u l /Uo-df l /& h and & has replaced x as the 
independent variable. 

The boundary conditions for (8) are 

~3fl=o at t/=O; dfi UI(X) fl = , a s  r / ~  (9 )  
&l Uo 

N u m e r i c a l  p rocedure  

The mean flow is governed by the Blasius equation (7), and the 
solution fo, f~), and f~ can easily be obtained by the standard 
shooting procedure. These fo-profiles are used in (8) to obtain 
the solutions for the oscillatory flow. 

The governing equation (8) of the oscillatory flow is parabolic 
and can be solved by marching in the & (or x) direction with a 
constant step A&. In general, there will be phase shifts of the 
boundary layer response with respect to the free stream. Then 

fl =flr + ifli (10) 
where f l r  and fli are the real and imaginary components o f f l .  

Substituting (10) in (8) and separating real and imaginary 
parts give 

~3flr 1-~ f l r f ; + f o  &/3 

_ [-/" U 0 -, "~ ~3fl i U 0 ] x dU1 
- s ; s l ` .  

_ / c32f, r ,, c3fl , \  
=cotf'o ~ f f ~ - f o  ~ )  (lla) 

_Pf. Uo -,"~dfir Uo ,, UI (1 

= °~kJo_ ~ - J o  &b ] (1 lb) 

The boundary conditions (9) now become 

f l , = f l i - - - -  0 at r/=0 

(12) 63flr "¢ UI(X) 63fli , 0  as r/ --. 
&/ Uo ' &l 

Using three-point backward finite difference representations 
for the &-derivative terms for example, 

[ (~fl r-] n -- 1.5/~r--2f~ r i +0.5f~7 2 
o& j a& 

where the superscripts denote streamwise station numbers--we 
reduce the pair of third-order coupled linear partial differential 
equations (11) to ordinary differential equations. The resulting 
equations are then replaced by a system of first-order equations: 

f'r=Ur 
Urr =/)r 

1 5 &  ,, , 
v'r = -- 0.5(frf~ +foVr) -- ~ (frf0 --foUr) 

I-/ U o , \  U 0 , -1 x dU l (13a) 
Uo dx 

+ ~ [f'o(O. 5u 7- 2 _ 2u'~ - 1) _f,~ (0.5f'~ - 2 _ 2f'~ - 1)] 
A& 

N o t a t i o n  

U Free-stream velocity 
x ,y  Boundary layer coordinates 
u,v Velocity components in the x- and y-directions, 

respectively 
t Time coordinate 

Stream function 
f Dimensionless stream function 
t/ Dimensionless coordinate in the y-direction 
~o Radian frequency 
Q Wave convection speed 
2 Wavelength 
v Kinematic viscosity 

& Dimensionless frequency parameter 
q~ Velocity phase angle 
p Density of the fluid 
p Pressure 
z Shear stress 

Subscripts 
o~ Ambient conditions 
w Wall conditions 
0 Mean components 
1 Oscillatory components 
r Real components 
i Imaginary components 
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f~= U i 

U I ~ V i 

1 . 5 t b  ,, , 
vl = --0"5(f i f ;  +fovi) - -~-~-  (f i fo  --foul) 

+t~I(1 U° \ V o f '~fr--~o(1 

t n - 2  n - 1  . n--2 n -  + ~  [fo(0.5u i _2ui )_fo(0.5fi  _2f i  1)] 

where (Jr, Ur, V,, fi,  Ui, Vi)--(flr, f~r, f'~r, f l i ,  f ' l i ,  f ' l i )  and the 
superscript n is dropped. The boundary conditions are 

fr=u~=fi=ui=O at t /=0  

Ul(x ) (14) 
Ui ---* 0 as r / ~  ~ Ur ---~ 

Uo 

Assuming that the solutions at the (n-1)s t  and (n -2 )nd  
stations have been obtained and that the unknowns fi and u i in 
(13a) take the values at the (n - 1)st station as their first iterates, 
we can solve (13a) by a "multisuperposition" method (described 
later). Using fr and u r so obtained as their first iterates in (13b), 
we can solve this equation by the same superposition method to 
get the second iterates of fi and u i. The iteration is repeated until 
the following convergence criterion is satisfied at nine 
preselected t/-points across the boundary layer thickness: 

/grk+ t --Urk /'/it:+ t --/"/ik m- <10 -3 and 10 -3 
= (Uik)max --  

where k and k + 1 denote iterate numbers. 
After obtaining a solution, we can march in the &-direction to 

generate solutions at different & values. 

The ser ies  s o l u t i o n  

To start the above iterative procedure, we need solutions at the 
first (i.e., leading edge) and second stations, where x is small or 
& < 1. These solutions are obtained by series of the form 

5 

flr(O3, t/)= ~ Gj(~l)69 j (15a) 
j=o 

5 

fli( &, t/)= Z Hjtq)  C°j (15b) 
j = O  

Equations 15a and 15b are actually series expansions in 
streamwise distance x rather than o5. To obtain the series 
solution, we need the U~ variation with x. In previous 
investigations,l-9 U1 was either constant or varied linearly with 
x. The present work thus assumes 

U 1 (x) = Co + Clx (16) 

where Co and C1 are prescribed constants. Equation 16 remains 
valid for general distribution of U~ to first-order approximation 
when x is small. Substituting (15) and (16) into (11) and 
grouping terms of the same order give, 

G;' + 0.5foG; + 0.5f;Go = 0 
for o5 ° terms (17a) 

H"' + 0.5foil;  + 0.5f;  = 0 

G7 +0.5foG~ - f ; G i  + 1.V;G~ 

+ H ; ( 1 - ~ - f ' o ) + ~ U °  \ Uo f~ )Ho+~= 0 

for ch ~ terms (17b) 
H~' + 0.5foH~ -f'oH'~ + 1.5f'~H~ 

_."° - So) re,, Col re\ 

G~' + 0.5foG~ - 2 f ; 6 i  + 2.Sf;q2 

+H,  ( 1 _ ~ o  f ~ ) +  QO f~H~=O 

for rb 2 terms (17c) 
/-/7 + 0.5foH~ - 2f'oH'~ + 2.sf;n: 

, /  Uo , \  Uo ,, C 1 /  

G~' + 0.5foG ~ - nf'oG'. + (n + 0.5)f~G. 

, / Uo , \ U o ,, 
+ . .  f r e . . - 1 : 0  

for o3" (n=3,  4, 5) terms (17d) 

H'~' + 0.5f oH'~ - nf'oH', + (n + 0.5)f~H, 

Uo , \ 
' 1 -  V f o) U° -Gn_ 1 - ~  I ;Gn_ l = 0  

The boundary conditions are 

at t /=0,  G.=H.=G'.=H',=O for n=0 ,  1 . . . . .  5 

a s t / ~ o o ,  G ; =  C°, G,= C', G'2=G'3=G'4=G'5=O (18) 
U o o9 

H'~=O for n=0 ,  1 , . . . , 5  

The above sets of linear ordinary differential equations are 
solved successively by the standard superposition method 
without any special treatment. 

The solution at the leading edge is 

L,(0,~)= ~o(t/), Ai(0,~)=/4o(t/) 
and the solution at the second station is 

5 5 

f ir(At3, t/)= ~ Gj(t/)(AC°) j, f,i(At3, t/)= ~ Hj(t/)(A&) j 
j - 0  j - O  

Multisuperposition m e t h o d  

At far downstream distances, &/Atb ( - M A x )  in (13) becomes 
very large. The complementary function and the particular 
integral therefore grow rapidly, causing an overflow problem in 
the computation before integration reaches the boundary layer 
edge. The multisuperposition method is used to overcome this 
difficulty. 

To prevent the overflow problem, we use a small initial value 
for Vr(O3,0)= 10 -40 for the complementary function. For the 
particular integral, we construct a function Ur(&, t/)= urg(&, t/), 
say, by stretching the Ur(&, t/) profile at the previous station so 
that Urg satisfies the outer condition uro(c3, r /a)= Ua(x)/U o. The 
integration stops when u r of the particular integral exceeds 103 
at t/=t/1. Then the standard superposition is done from t /=0  
to n=r/1, so the superimposed solution satisfies u~(6J, r / l)= 
t/rg((~),?/1 ). Using fr(rb, ql), Ur((D,t/1), and /)r(fl),t/1) a s  initial 
values, we resume integration from t/1 outward until u r exceeds 
10 3 at t/2. The superposition is done again from r/= r/1 to t/= t/2, 
so Ur(&,t/2)=u~g(&,q2). These steps are repeated until r/~ is 
reached. The final superimposed solution is the required 
solution. 

The same multisuperposition method is applied to (13b) for 
the imaginary part of the oscillatory flow. In this case, the 
function uig(&, q) required to obtain the particular integral is 
taken to be ui(6~, r/) at the previous station. 

Throughout the computation, qoo=9, At/=0.1, and 
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Figure 1 Variations of amplitude and phase of wall shear from 
different theories (Q--,oo): present; - Lighthill 1, (a) low- 
and (b) high-frequency results; A,  Ackerberg and Phillips2; - - - -  
McCroskey and Philippe3; x Cebeci4; • Telionis and Romaniuk 5 

Atb = 0.log/U0 are used. All integrations are done by the fourth- 
order Runge-Kutta method. 

R e s u l t s  

In terms of the transformed variables, the oscillatory velocity- 
amplitude ratio lud/U, and the phase angle q~ between u~ and 
the free-stream velocity are 

lUll Uo [-//63f, r"~ 2 [6~fli'~2"] 1/2 
U I - U 1  Lt~q-~) + t ~ )  J (19a) 

and 
1 ~ Of 1 i/0r/] (19b) 

~b= tan-  Laf~,/~n j 
At the wall, the velocity phase angle is 

~p --'" . _ .  n_llrq2fli/63r121 
. _ o -  tim ° q~-ta  L~Zflr/dtl2J (19c) 

Similar to other boundary layer parameters, the wall shear 
stress Zw consists of a mean ZwO and an oscillatory Zwx 
component; that is, 

Zw=Zwo +'Cw, exp[icoCt - x / Q ) ]  

In this expression, Zwt =Zw~r+ iZwai, where Zw, r and Zwx i are the 
real and imaginary part, respectively. The wall shear amplitude 
ratio IZwa I/%o and the phase angle ~b~w between the wall shear 
and the free stream are 

I+w,l_ I-I~.,/oyl] _ ~_[~oV,.to.~: + ~S. , l~ .~)~]  ''~ 
Zwo L duolOY Jr = o -- { d2fotdrl 2 J. = o 

(20a) 

and 

- ,  Fe2f,~/en 2 ] 
+w=tan L ~ j + =  o (20b) 

Equations 19 and 20 are used to compute the respective 
quantities lUll~U,, 4~, ~.+o, I++,1/++o, and ¢,w' 

L im i t i ng  case O ~oo  

This case has been studied extensively by many researchers, 
both theoretically 1-7 and experimentally. 7 It provides a useful 
test case to validate the present computation. These studies 
assumed constant U 0 and U1. Figure 1 displays the comparison 
of the amplitude and phase of wall shear from the present 
method with those from various existing theories? -s Excellent 
agreement is obvious from low to high reduced frequencies. In 
Figures 2 4 ,  the velocity amplitude ratio and the velocity phase 
angle for a wide range of & are compared with the theoretical 
results of Farn and Arpaci 6 and the experimental results of Hill 
and Stenning. 7 Again, excellent agreement is obtained. 

Fini te wave speed Q 

The experimental results suitable for comparison are obtained 
from Patel, 8-9 His measurements were made at x = 0.25 m with 
Uo= 10ms - t ,  U 1 =(0.449+0.468x)m s -1, and Q=0.77U o. 
These values are used in the present computation, and the 
results for velocity amplitude ratio and velocity phase angle are 
plotted in Figure 5 together with the measurements for 
6~=0.314 and 1.257. The agreement is poor. Recent 
measurements ~ 2 using the same experimental facilities as used 
by Patel 9 verify that Q decreases with downstream distance and 
that Q -0 .61  U o at Patel's measuring station, where x = 0.25 m. 
Figure 6 displays the results for Q=0.61U o and &=0.314, 
0.628, 1.257, and 1.571. It shows significant improvement in the 
agreement with the measurements. The phase angle profiles are 
accurately predicted. The computed velocity ratio profiles 
agree well with the measurements and clearly exhibit large 
overshoots and dips at high reduced frequencies. For  the 

1 .5  

i .0  ~ ~ r " - - -  
(io,i~ 

0 . 5  I I I 

0 o 

2 o 

4o 

1 - - +  ) m a x  

6 "  

8< 

10  
0 

I I I I 

I l I I I I I 
2 0 6 8 

~J 

Figure 2 Variations of maximum velocity ratio and phase lag 
(O ~oo): - -  present theory; - - -  theory, Farn and Arpaci6; O 

Hilt and Stenning 7 experiment, 
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- 1 0 "  

Figure 3 
present; - - -  
Stenning 7 

,,2 

Oscillating boundary layer profiles (Q-+oo): 
theory, Farn and Arpaci6; © experiment, Hill and 

ratio profile and velocity phase angle profile, respectively. The 
results in these figures are obtained for x=0 .25m,  
U 0 = 1 0 m s  -~, U l=(0 .449+0 .468x)ms  -1, and &=1.571. 
From the velocity ratio plots, velocity dips and huge velocity 
overshoots occur for small values of Q/Uo. As Q/Uo increases 
from a small value, the overshoot decreases and the velocity dip 
increases. Eventually, the overshoot and dip disappear at 
Q/Uo= 1, and the velocity ratio increases with q in a gradual 
monotonic manner. As Q/Uo increases further, the overshoot 
reappears and tends to an asymptotic value of 1.24 as 
Q/Uo ~ oc. The velocity profile is highly sensitive to Q/Uo for 
Q/U o < 1. From the phase angle plots, the velocity inside the 
entire boundary layer lags the free-stream velocity for small 
Q/U o. As Q/U o increases, the phase angle increases. Eventually, 
the velocity in the inner part of the boundary layer leads the free 
stream while that in the outer part lags. 

Discussion 

The present method is developed for free-stream oscillations 
with wide ranges of wave convection speed and frequency. The 
requirements are that the oscillation amplitude must be small 
compared with the mean flow speed and that the wavelength 2 of 
the oscillation must be large compared with the mean boundary 
layer thickness. Since 2 = 2~zQ/~o, the wave speed cannot be too 
small and the frequency cannot be too large in order to meet the 
latter requirement. However, the wave speed and the frequency 
rarely fall into these extremes. 

The results of the method agree well with available measure- 
ments and the results obtained by other methods. In addition, it 
is found that the series solution and the differential-difference 
solution for small reduced frequencies are almost identical. 
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Figure 4 Oscillating boundary layer profiles (O-,oo): 
G • experiment, Hill and Stenning 7 
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frequencies used in the computation, the velocity overshoot 
increases and shifts closer to the wall as frequency increases. At 
high frequency, velocity dip occurs in the outer region of the 
boundary layer, and it also increases with the frequency. 
Throughout the boundary layer, the velocity phase lag increases 
with frequency. 

The effects of convection wave speed Q on the boundary layer 
response are shown in Figures 7 and 8 for velocity amplitude 
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Figure 5 Oscillating boundary layer profiles ( Q = 0 . 7 7 U 0 ) :  - -  
present; x G experiment, Patel 9 
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Q/U o < 1 and Q/U o > 1, as illustrated in Figures 7 and 8, because 
the free-stream oscillating pressure gradient 

dU 

Ox 

:i09pul( ~ - 1) e x p [ i ~ o ( t - Q ) ] ,  

where p and p are pressure and density, respectively, that drives 
the boundary  layer has different signs for the two cases. 
Furthermore,  the quanti ty (Uo/Q-1) is more sensitive to 
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Figure 6 Oscillating boundary layer profiles: present, 
Q=O.61U0; x 0 experiment, Q=O.77U0 (nominal), Patel 9 

Further ,  some solutions of the method were compared with 
those of the revised high-frequency theory for finite wave speed 
in Ref. 1 1 and good agreement was obtained. Based on these, it 
may be concluded that the present method is accurate. 

The analysis yields a mean flow boundary layer equation (7) 
identical to the steady flow equation. This implies that  the mean 
flow is unaffected by the free-stream unsteadiness, which has 
been confirmed by various experiments. 7 9 

The boundary layer shows entirely different response for 
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Figure 8 Velocity phase angle profiles for different Q/Uo 
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changes in Q/Uo for Q/Uo<l  than for Q/Uo> 1. This is 
illustrated as follows: 

Q/U o 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

(Uo/Q-1)  1.50 0.67 0.25 0 - 0 . 1 7  - 0 . 2 9  - 0 . 3 8  

This means that the change in the free-stream pressure gradient 
is larger for Q/Uo < 1 than for Q/Uo > 1. Consequently, when 
Q/U o is small, the response is sensitive to changes in Q/Uo, 
which can be clearly seen in Figures 7 and 8. For  this reason, the 
value of the wave speed should be carefully measured in future 
experiments with similar conditions. 

Conclusions 

A method is presented for predicting the response of the two- 
dimensional, incompressible laminar boundary layer under 
small harmonic progressive free-stream oscillations. The main 
feature of the method is its ability to deal with full ranges of free- 
stream oscillation frequency and wave speed. Extensive 
comparison of  the present results with those obtained by other 
methods and measurements shows that the method is accurate. 
It is also found that the wave speed, when less than the mean 
free-stream speed, is sensitive to the boundary layer response. 
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